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, direction of the crack propagation. This anomalous variation of the local strain %

energy density leads to the establishment of its two critical values, (Cd-!rni and

(_w) which are independent of the crack length and specimen geometry. It is %

suggested that the criticality of ( -,), may signify a local instability ahead of

the crack tip leading to the onset of crack initiation; in addition, the criticality

of( t'¢ )o, may signify a global instability leading to the catastrophic fracture or

plastic collapse of the specimen. It has also been demonstrated in the present study

that the-%lfaiureoads can be numerically and reliably predicted for any crack -

length.
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I. INTRODUCTION

Throughout history, the application of materials in engineering design has

posed a variety of problems. In the nineteenth century, the industrial age ush-

ered in a vast increase in the use of metals. It was soon discovered that structures

made out of such materials were not perfect. Tragic accidents such as train wrecks

* and bridge collapses soon brought about widespread concern over the design of such

* structures. In many cases, the blame was correctly attributed to a poor basic de-

sign. Yet it was gradually discovered that metals had deficiencies in the form of

pre-existing flaws, and such flaws could initiate cracks and fractures, thus bringing

about failure of the structure.

The discovery of these flaws brought about an interest in studying metallic

materials, for it was felt that prevention of such flaws would improve structural 4

performance. Over the next several decades, the increase in the understanding of

metallic behavior, combined with improved production methods, brought about a

marked reduction in the number of structural failures.

*In the second World War, a renewed interest in the study of materials came

about as a result of the failure of several Liberty ships. Investigations into these

* failures revealed that flaws and stress concentrations were responsible for the brittle

fractures. In the next several years, high strength materials were developed in the

* interest of weight savings. As many of these materials have low fracture toughness,

it was discovered thzt they would fail at stresses below the service stress they were

designed for in the presence of small cracks. TAiis occurence of low stress fracture in

high strength mate -ials has brought about the development of fracture mechanics.

p4
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Although the majority of fracture mechanics has been developed in the last
few decades, its beginnings can be traced back to the research of A.A.Griffith (21 U
in 1921. Griffith argued that in the case of uniaxial tensile loading of a material

containing a crack perpendicular to the load, the crack would propagate and bring

about catastrophic failure at a stress below its tensile strength. By analyzing the

region surrounding the crack tip with respect to a global energy balance, Griffith

developed the concept that a pre-existing crack can only extend catastrophically

when the amount of elastic strain energy released on growth of the crack equals or

exceeds the surface energy of the newly formed crack surfaces. The Griffith equation

for the strength of a solid in plane stress containing a crack of length 2c was given

as:

f2E-1Irc (,

where E is Young's modulus, and - is the surface energy [2-41.

Although Griffith's theory works well for purely brittle materials, it does not

accurately describe the fracture situation in ductile materials. Griffith assumed

that all of the work done during the fracture process goes into the creation of new

surfaces; this does not allow for any dissipation of energy by plastic deformation

and other energy dissipation mechanisms. As a result, the original Griffith criterion

was extended by Irwin and Orowan [5,61 to include the case of ductile fracture of

metals.

Irwin and Orowan noted that the energy required for a crack to extend in

a metal is much greater than the surface energy of the new free surfaces. They

proposed that a plastic work term -1p should be added to the Griffith surface energy

-. Furthermore, they argued that -yp is much greater than -1. Thus, -p replaced --

in Griffith's original equation, Eq. 1, as follows [5-71:

2E(y + -y) 2E-1p . 2o :I = -- ( 2 ) ..¢
7rc 7rc

2
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Irwin later introduced the terms G and Gr, for the plastic work associated

with a spontaneously growing crack [3]. When G, the energy release rate or crack

extension force, becomes equal to the critical value, G1 :, the crack extension would

then take place. This became known as the critical energy relase rate criterion [1,71.

By substituting Gr, for the surface energy term 2-, Eq. 1 becomes:

rf = E- (3)
V7rc

The validity of Eq. 3 is limited to only linear elastic behavior of the specimen

having a crack with practically no crack tip plasticity. However, if there exists a

significant amount of plasticity, i.e., the crack tip plastic zone is large compared to

the crack size, linear elastic fracture mechanics no longer applies. In 1961, A.A.

Wells [8) introduced the critical crack opening displacement (COD) as a fracture

criterion. This was originally developed as a criterion to treat those materials that

exhibit a high ductility. Wells stated that crack extension is assumed to occur when

the COD exceeds a critical value. One of the criterion's major drawbacks is the fact

that it does not permit the direct calculation of a fracture stress [1,71. The COD is

found from:

COD = 4(1 - v2)KIc ()irEar"(48

where Ll is Poisson's ratio, cy is the yield strength, E is Young's modulus, and K1 ,

is the mode I plane strain fracture toughness.

In 1968, J.R.Rice [19] introduced the application of a path-independent contour

integral to analyze elastic-plastic crack problems. Similar in principle to the critical

energy release rate criterion discussed above, Rice's J-Integral provides a fracture

criterion for cases where plasticity effects are not negligible, and it is given as [7]

3
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J Wdy - (T )Ui (5)

r

where W - ii dcij (6)

where the contour r is traversed in a counterclockwise direction from one crack face

to the other, W is the strain energy density, Ti is the traction vector directed at a

point on the contour r, ui are the displacement components, and s is a measure of

arc length along r. The crack is located in the xy - plane such that the crack lies

parallel to the local z - axis.

The J-Integral has been widely used in non-linear fracture mechanics. It can be

extended to critical values which will characterize the crack tip field at conditions

of imminent fracture initiation. In the linear elastic case, the crack growth occurs

if J exceeds a critical value J1 c which is analogous to G1 ,. However, J-Integral is

regarded as a more general criterion in that it is capable of handling both elastic

and elastic-plastic fracture situations [1,101.

The independence of J on the contour path I chosen has been the subject

of a great deal of research. Many results have indicated that J tends to decrease

as the crack tip contour shrinks to the crack tip. In the elastic case of true path

independency, however, J remains constant as the contour shrinks. In addition,

J can be applied to only stationary cracks. Another limitation is that the plastic

region around the crack tip must be small with respect to the size of the region

in which J controls the stress field [11. In the opinion of G.C.Sih, "There are

too many fundamentally unresolved difficulties concerning the assocation of J with

ductile fracture." [7]

At roughly the same time as Rice's J-integral was introduced, another fracture

criterion was developed using the crack resistance force R [7]. The criterion was

based on comparing R to the energy release rate G. It was stated that:

4



a) for G < R, no crack growth

b) for G = R, stable crack growth

c) for G > R, fracture instability occurs

An evaluation of this fracture criterion is possible upon analysis of the R-curve, a

plot of G and R versus the crack length. At this stage, however, the theory for the

R-curve has not been firmly established [1].

In 1973, G.C. Sih developed a new criterion based on the strain energy in the

material, and termed it the Strain Energy Density Criterion [11,121. The strain

energy density in a solid can be calculated from either the area under the true

stress-true strain diagram, or from [13]:

d [+ +a2 - 2v(aay + ayaz + a-ao] + 2(7dV -2E ax +a a 2G(7

where a,, a az are the normal stresses, rzy is the normal shearing stress, E is

Young's Modulus, G is the shear modulus, and v is Poisson's ratio. From this

expression, Sih's strain energy density factor S can be analytically derived, and is

given as:
dW -

S r() .d.(8)

The Strain Energy Density Criterion is given in two parts:

a. Crack initiation takes place in a direction 0o determined by the relative

minimum of the strain energy density factor S:

S-S.mi 0 = 00 (9)

b. Rapid crack growth occurs when the minimum strain energy density factor

Sn, reaches a critical value:

sr i n --- (10)

The general expression for S,, the critical strain energy density factor, is derivable

from experiments only, and is given as:

, e , " * € 2' < " " v, " : ," -.- '- ,.' " ' '.. - -"....KK . , , ' -. "" " ~ "" " " " " .* . . ." "



dVS0 -- c ) (11)

where I~."-) is the experimentally determined value of 4. at fracture, and r. is

some critical radius of a core region surrounding the crack tip. Within the limits

of linear elastic fracture mechanics, S, can be related to the mode I plane strain

fracture toughness Kle as follows:

S=(1 + )(l -2v) 2 1)"".-
SC 27rE K ' (12)

The ultimate goal in our research was to find a suitable fracture mechanics

criterion that could be extended into a fracture mechanics theory for composite

materials. In composites, it is most likely that a crack will not propagate in a self-

similar manner. All fracture mechanics theories except that of Sih's assume directly

or indirectly that the crack must propagate in a self-similar manner. This is the

main reason why we were attracted to Sih's Strain Energy Density Criterion in our

research.

The main criticism of Sih's criterion lies in the fact that although the definition -

of S is a purely analytical expression, the definition of S is not purely analytical.

Although r can be substantiated analytically, r,- cannot be; furthermore, r, has no
dW • °W

physical significance. Likewise, although - is well founded analytically, can

be determined only from experimental true stress strain curves.

Finite element analysis was chosen as the tool through which our research was

performed. One of the objectives in our research was to determine how the strain

energy density dw behaves in the presence of a crack on a local level. This local dw
enerydV

is distinguished from a global dw in that the latter is determined from calculating

the area under an experimental true stress-true strain diagram. Finite element

analysis was chosen to conduct a local energy analysis, as it is obviously impossible

to conduct such an analysis experimentally.

6
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Acceptance for employing the finite element method in non-linear situations

is dependent on several factors. To begin with, considerable computing power is

required to solve problems with this degree of complexity. Yet improvements inr

digital computers over the last decade of so have increased computing power while

lowering the computing costs. Secondly, the accuracy of any proposed solution

technique must be proven before non-linear finite element analysis can be applied

to design.

In the present study, an elastic-plastic stress analysis was performed on A-517

* steel plates in order to observe the local behavior of the strain energy density in

the vicinity of the crack. A-517 is a low carbon, quenched and tempered alloy steel

intended primarily for use in welded bridges and other structures. Compared to

other high-strength steels, A-517 exhibits a very high yield strength is well as good

low temperature toughness (14,151.

Thus, the objectives of the present investigation were as follows:

1. Develop a suitable finite element analysis program to perform a non-linear

stress analysis of cracked solids.

2. Use this finite element program to study local Lw in cracked A-517 steel
d4.

plates.

The finite element method is a numerical analysis technique utilized for ob- I

taining solutions to an extensive variety of engineering problems. Any continuous

quantity, such as stress, strain, pressure, or temperature, can be approximated by

models constructed of a set of piecewise continuous functions defined over a finite

number of elements. Using the concept that any continuous function can be rep-

resented by linear combinatio. 's of algebraic polynomials, approximation functions

are derived for each of these elements. Elements are connected at common nodal

points and collectively approximate the shape of the domain. The assemblage of

elements is based on the concept that the solution is continuous at the boundaries

7



common to the elements [16-201.

There are generally six steps followed by the computer in the finite element 9

method-

1. Read in input data (including the idealization)

2. Select interpolation or approximation function

3. Compute the properties desired for each element

4. Assemble the element properties

5. Obtain the system of equations

6. Solve the system of equations

The first step in preparing the input data is setting up an idealization to rep-

resent the structure (or, more generally, the domain). The resulting solutions for

the program will obviously depend on the idealization created; it is here where

experience in using finite element analysis is evidenced. Once certain guidelines

are established, however, even a beginner can develop effective idealizations. These

guidelines are as follows: 1211

1. Lay out the structure to scale, preferably on linear graph paper

a. If the structure is symmetrical, situate the structure so that one of the

coordinate axes corresponds to the axis of symmetry.

b. Use enlargements or blowup areas where necessary

2. Divide the structure into a suitable number of elements; concentrate the ele-

mnents in areas of high stress

3. Sketch in intermediate nodes along the element edges

4. Number the nodes using a suitable technique

5. Number the elements using a suitable technique

6. Compute nodal coordinates

A word on various types of elements is due at this point. The long-used

constant-stress triangular element is now felt to be both obsolete, inefficient, and

8
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surprisingly inaccurate [221. This is readily evidenced upon comparison to to-

day's higher order elements such as the 12-node isoparametric quadrilateral element

(Quad-12 element). See Table 1 and Figure 1. The use of higher-order elements pro-

duces more accurate results in those areas where the gradient cannot be accurately

approximated by sets of constant values. As opposed to the constant stress trian-

gular elements, the Quad-12 element has a continuously varying stress field across

its face. The displacement varies cubically within the Quad-12 element, as opposed

to linearly in the constant-stress element. As a result, one Quad-12 element can

replace as many as 200 triangular elements, thus reducing data preparation time

and computer CPU time. In addition, the use of the Quad-12 element increases the

accuracy of the solution.

The advantages of the Quad-12 element are thus:

1. Displacements vary cubically over the element. The element approximates the

true displacement function with a third-degree polynomial degree fit.

2. The geometry of the element edges may vary cubically; thus, curved edges may

be used to more closely approximate the structure.

3. As the stresses are given by appropriate first derivatives of the displacement

functions, they vary quadratically over the element.

In numbering the nodes and elements, a technique is used in order to maximize

the efficiency of the computer program. As a major part of the solution procedure

in finite element analysis is the mathematical manipulation of matrices, the compu-

tation time is directly related to the size of these matrices. The set of equations that

arise have a large number of coefficients which are zero. Upon analysis of a typical

system matrix, it is seen th..t all non-zero coefficients will fall -. ;thin two imaginary

lines which can be constructed parallel to the main diagonal. The distance from the

diagonal to this imaginary line is commonly referred to as the bandwidth. Reducing

the bandwidth reduces the storage requirements for the program, thus reducing the

*. , -°-- .* .*.-.*-



total computation time.

The most effective way to minimize the bandwidth is to number the nodes in the

structural idealization in such a fashion as to keep the difference between numbers

of adjacent nodes to a minimum. Similarly, the elements in the idealization should

be numbered in the same fashion so as to minimize the difference between the

numbers of adjacent elements [19,211. The following section deals with the problem

formulation.

t

Table 1. Tabular comparison of triangular and Quad-12 elements
for a cantilever beam problem

Factor Triangular Quad-12

Number of Nodes 400 243
Number of Elements 686 3

Semibandwidth of Stiffness Matrix 20 24
Order of Stiffness Matrix 800 56

Required Computer Time on CDC 6400, sec. 53 6

Average Displacement Error, percent -9 0

Average Stress Error, percent -20 0

Manhours to prepare data 2 0.2
Turnaround Time overnight 5 minutes

5%

10 .
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II. PROBLEM FORMULATION q

The first objective in the project was to develop a suitable finite element anal-

ysis program in order to study the local behavior of -- in cracked steel plates.

PAPST, a two-dimensional elastic-plastic finite element program, was selected as

a starting software package. PAPST, an acronymn for Plastic Axis ymmetric and

Planar STructures, has been developed by the Navy over the last several years for

the analysis of elastic-plastic crack problems [21-23].

The features of PAPST are numerous. The program incorporates the 12-node

quadrilateral isoparametric element adapted to plane stress, plane strain, and ax-

isymmetric conditions of structural behavior. The displacements and geometry vary

cubically in the Quad-12 element, thus allowing the accurate modeling of curved

structural boundaries. By the nature of the Quad-12 element, relatively few ele-

ments are needed to effectively model most simple structures. PAPST uses three

basic elements in all: the standard Quad-12 element, the small circular core element

which completely encloses a crack tip, and the enriched 12-node isoparametric ele-

ment which has a corner node corresponding to a crack tip [22].

The outstanding feature of PAPST is its non-linear stress and fracture mechan-

ics analysis. It has the ability to treat cracks in fracture mechanics applications by

two different methods, both of which will produce a direct calculation of the Mode I

and Mode II stress intensity factors. Rice's J-Integral can be evaluated on up to ten

different paths surrounding the crack tip. The J-Integral for elastic-plastic crack

problems is given by Eq. 5.

PAPST incorporates the incremental flow theory of plasticity and the Von

Mises yield criterion with isotropic or kinematic hardening laws, or a combination

of the two. The incremental plasticity theory is given as [23]:

12



-= + fl(o) .s3 - ' (for and a' > 0) (13),'~~~ 2u =e - - u+ (") °,Oryod...... , ,> e

5%

i= +~-~ (otherwise) (14)

where:
iq= deviatoric strain rate components (ei = 4i - l6ppSij)

sii= current deviatoric stress components (si, = aii - pp~ii)

4 s = deviatoric stress components measured from center of current yield

surface (s = s - aii)

aq = coordinates in stress space of center of yield surface

ae =von Mises effective stress =VsIs; ,"-

a 3 ,,T s .

Ge = V jji~i '

cryd = yield stress

In modeling the material in PAPST, an experimentally determined true stress-

strain curve can be approximated using either a Ramberg-Osgood power-hardening

model or a multilinear model. These models are graphically depicted in Fig. 2 [22]

The mathematical form of the power-hardening model is given as: [23]

for a < a, '= (15)

a IGn-G 1 ayfor[ (-!I-) _T (16)

where n, a, and a (the yield stress) are chosen to best model the observed behavior.

The mathematical form of the multilinear model is given as: [23]

a0 al a(- (17)= - (a' - o°y1 +  - (0 - a,) +.. + -- (o"%_1(7
E EJ EIm~u J 1

. where aN- < aN, ay is the yield stress, and

N EAev - Aa'N (18)
Aa lv.,-

13 I
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For this material model, the plastic strain rate is given by:

_____ a
= E f(,) = (19)E a.

PAPST includes several other features: (21,23]

1. The crack tip elements include the plastic mode I singularity developed by

Hutchinson, as opposed to the classical linear elastic singularity.

2. The Newton-Raphson iterative procedure is used to solve the non-linear

equations under the restrictions of user-specified convergence criteria.

3. PAPST uses 4x4 numerical integration (Gaussian quadrature) to evaluate .

the conventional Quad-12 element's tangent stiffness matrices.

4. Loading, unloading, and reloading cycles can be used to simulate mechan-

ically and/or thermally induced residual stresses and strains.

5. The first load increment is automatically calculated to correspond to the

first yield in the specimen; the following load incrementation is user-

specified.

6. Simulation of quasi-static crack growth.

7. A treatment of finite strain effects through the use of an updated La-

grangian formulation.

8. The capability to compute the applied tearing modulus T.

9. Large strain and large displacement formulation.

As an outgrowth of the non-linear stresz -inalysis from PAPST, the strain en-

dWrgy was calculated from Eq. 7. It should be pointed out that this equation
is only valid in the elastic region of the material. PAPST also has the capability

to list those nodes that have undergone yielding. From this information, it can be

determined where the formula for l can and cannot be applied. To overcome
dV
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r. *-..:- . . . S



dWthis restriction, -Fv can also be calculated from the area under the analytically

generated true stress-strain diagram. This approach is valid for both the elastic

and plastic regions. The non-linear stress analysis output from PAPST can be used

to analytically draw the true stress-strain diagram; the area under this curve was

computed and said to be equivalent to local dW

41
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Figure 2a: Power Hardening Material Model

03E

Figure 21-: Multilinear Material Model for INI 6

Figure 2. Graphical depiction of the material modeling available in PAPST
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III. SOFTWARE DEVELOPMENT

A major portion of the research was devoted to the development of a suitable '"'

program to analyze the behavior of local w in cracked steel plates. PAPST, a two-

dimensional elastic-plastic finite element program described extensively in section II,

was selected as a starting software package. As PAPST was used mainly for its non-

linear stress analysis capabilities, several modifications and additions were made to

the program to better serve the needs of the present research. The major addition

was a subprogram which performed a complete energy solution and analysis. The

modified version of the original program is henceforth referred to as ARLPAPST

in the rest of this manuscript.

There were three major areas in which PAPST was modified:

1. Data preparation and pre-processing

2. Modifications to the running of the PAPST stress analysis program

3. Several post-processors added which perform complete energy analyses

including both analytical and graphical interpretation of output from the

PAPST stress analysis program

The data input for the main PAPST program is quite extensive. It includes

H nodal connectivity and coordinates (both Cartesian and polar), a variety of loading

* options, graphical and data output options, angled and un-angled crack analysis,

many fracture mechanics analysis options including calculation of the J-Integral

on up to ten user-specified paths, and user-specified non-linear material modeling.

To aid the user in entering this vc'uminous amount of data, an interactive pre-

processor was added to the original package. This has significantly reduced the

-. data preparation time.

The second major area of modification concerned the convergencecriteria used

17
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by PAPST in the non-linear stress analysis. The program's original convergence

scheme was replaced by a more intelligent and versatile one. The new criteria

reads in initial convergence parameters specified by the user in the data input. As

the program runs through each load increment, these parameters are optimized

for the most efficient convergence possible. In addition, these continuously variable 4

convergence parameters are automatically tested to determine whether the resulting

criteria is within acceptable limits. 4.
4'

The main program was also modified to read in raw data output options spec-

ified by the user, thereby printing out only selected parts of the output for each

increment. These included:

a. Strains and stresses for each element

b. Normal strains at each node

c. Normal stresses at each node

d. Location and value of highest Von Mises stress

e. Original (user and computer generated) nodal coordinates

f. Nodal displacements

The third and most extensive area of modifications to the main PAPST pro-

gram was the post-processing. This post-processing, now an integral part of ARL-

PAPST, includes a complete analytical and graphical energy analysis of the speci-

men. The present capabilities include:

a. Calculation of area under the true stress-strain diagram for any load in-

crement and any user-specified node in the mesh. This provides a direct

means of calculating local 4-- and is valid for nodes in both the elastic

and plastic regions. A graph is produced of the true stress strain diagram W

in addition to a history of the incremental areas under the curve.

b. Calculation of local -- using Eq. 7 for any node in the elastic region at

any load increment.

18
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c. Plots of local 4w (formula or direct) versus distance of corresponding node

from crack tip.

d. Plots of local -- (formula or direct) versus 0, the angle of the correspond- '4

ing node from crack plane.

e. Plots of the specimen idealization during loading, indicating the regions

where yielding has taken place.

Thus, the original PAPST non-linear stress solver has been extensively modified

and improved upon. The new package, ARLPAPST, is a much more versatile and jL
capable program. Its advantages are summed as follows:

a. More user-friendly.

b. An extensive list of raw data output and graphical output options are now

available.

c. A more versatile and efficient convergence criterion for the non-linear stress

analysis.

d. A complete energy analysis of the specimen, including two methods to

calculate local dw at a user-specified node and at a user-specified load

increment.

e. Several options available to graphically and analytically interpret the en-

ergy analysis.

[.'
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IV. FINITE ELEMENT MODELING':

The behavior of the local energy in the immediate vicinity of the crack tip

was analyzed using ARLPAPST. All of the computer analysis was performed on

a Digital VAX 11/782 super minicomputer. The original specimen analyzed is

pictured in Fig. 3. As it is symmetric about the crack axis, only an idealized (

upper symmetric half of the specimen was modeled. The idealization shown uses

the 12-node isoparametric quadrilateral elements discussed previously. Note how

the elements are concentrated closer to the crack tip. A fine mesh is required for
C% S

an accurate stress analysis close to the crack tip, as this is where the non-linear

material behavior and plasticity is most evident. But as the distance from the

crack tip increases, the density of the mesh can decrease. A detailed mesh far from

the crack tip is both unnecessary and costly.

An experimental true stress-true strain diagram for A-517 steel was taken from

the literature [141 and is shown in Fig. 4. This curve was modeled in a bi-linear

fashion; the two points chosen from the curve are represented by:

al=107,400 psi iEi=0.00 3 5 8  (yield)

a2=108,570 psi 2=0.006 (post-yield)

The other material properties used in the program were a Young's Modulus of 30

million psi and Poisson's ratio v of 0.3. A load of 6000 lb. was used as a reference

to which load increments were computed for data input in each of the computer

runs.

Several different specimen geometries were analyzed, and are tabulated in table

2. For each of these geometries, several runs were made to vary the incremental

loading of the specimen. When a new specimen geometry is first analyzed, a wide

20
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Figure 3. The original model analyzed, crack length 1.537 inches
a. Actual specimen geometry
b. Idealized geometry (symmetric half)
c. Structural idealization
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range of load incre-nents is usually chosen in order to gain a rough idea of how

the specimen responds to the loading. In subsequent runs, the load increments are

concentrated over a certain range to more closely study the fracture behavior of the

specimen. The choice of load incrementation must be chosen in such a manner that

the increments are close enough to permit effcient convergence and an accurate

stress analysis. Yet there is a tradeoff, for as the number of increments is increased,

so is the cost of the individual computer run. Analytical results are presented and

discussed in the next section.

.-

so-

060

:r_ 40_ _.-

20'

LON ITUDLNAL TRANSVERSE

0
0 .002 .004 .006 0 .002 .004 .006

STAIN - LN/I

Figure 4. Experiz'ental True Stress Strain curve for A-517 steel used for bi-linear
modeling
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V. ANALYTICAL RESULTS AND DISCUSSION

The objective in our research has centered on studying the behavior of the

local strain energy density 4-w in the vicinity of the crack tip. From the litera-

ture it is found that 4-w monotonically decays as the distance from the crack tip

increases. From the non-linear stress analysis output from ARLPAPST, several

energy analyses were performed in order to check this expected behavior.

A global analysis of the energy field around the crack tip is given in Fig. 5. This

is a global analysis in the sense that the data represents practically all the nodes

generated in the finite element mesh. In general, it can be seen that the energy

steadily decreases with an increase in distance from the crack tip, as predicted in

the literature. As Fig. 5 indicates, however, there are some energy values that

do not follow this predicted behavior. This anomalous behavior of an increase in A

energy away from the crack tip was confirmed to be correct.

To study this anomalous behavior more closely, the analysis then narrowed to

those nodes lying at a particular angle 0 from the crack axis. As Fig. 6 shows, the

curves at 30' and 50' exhibit the expected behavior of a decrease in energy with an

increase in distance from the crack tip. However, the curve at 0 =00, representing

those nodes lying directly in front of the crack, exhibits a minimum energy point

followed by an increase in energy. This unexpected behavior of an increase in energy

with an increase in distance only occurs in those curves corresponding to 0 0',

irrespective of the crack lengths and specimen dimensions.

From Fig. 3, it is seen that the crack axis is perpendicular to the direction of .

the loading. Secondly, a homogeneous material (A-517 steel) was used throughout

the research. Thirdly, in all the specimens analyzed, plane strain conditions were

maintained, thus eliminating the effects of plane stress. As a result, it is safe to
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assume that the crack will propagate in a self-similar manner at 0 - 00. It was

felt that there was a possible link between this anomalous behavior of A-- in the

0 = 0* direction and the anticipated direction of crack growth at 0 = 00 which is

coincidently in the same direction.

The next step in the research was to study the effects of load in further detail

on the variation of the local strain energy density. This is graphically depicted in

Fig. 7. As the distance from the crack tip is increased, the energy initially decreases

rather sharply. The curve then reaches a minimum point at roughly a radius of 0.22

inches from the crack tip. From this point to the right edge of the specimen (at 0.5

inches from the crack tip), an increase in energy occurs. At the lower loads, this

increase is rather subtle. Yet, at the higher loads, the energy increases sharply and

then appears to level off.

The minimum energy point that exists in each of the curves was referred to as

"),.in and occurs at a location rmn. As the load is increased on the specimen,

this value of ( ) becomes more sharply defined, i.e., the curve develops a more

sharply defined cusp at the bottom. In addition, as the load is increased from 1200

lb. to 4800 lb., (4)- increases. However, (-), for the curve at 5400 lb.

is significantly lower, and it signifies that d attains a maximum value at a

load between 4800 lb. and 5400 lb. Furthermore, at larger distances from the crack

tip, it is seen that after an increase in energy, the curves tend to reach a constant

energy value, a region in which the energy gradient is zero. This constant value of

energy was referred to as (-j-)C,,; the region of constant energy starts occuring at

a location rco, in front of the crack tip.
dW N

In order to deterUine the load at which (7jw)mjn attains a maximu, value,

ARLPAPST was run with different load increments chosen so as to yield several

energy values between the loads of 4800 lb. and 5400 lb. After plotting curves

similar to those in Fig. 7, plots were produced of the minimum energy versus the

25



load. This is seen in Fig. 8. This figure shows more clearly how (-)mn steadily

increases with an increase in load up to a maximum value around 4980 lb., and then

sharply decreases with further increase in the load. The peak value of (dw)rm , was

referred to as (4w-) . the load at which (d) occured was referred to as a

special critical load, P,,it.

Our attention then turned to studying (4d-w). From Fig. 7, it was seen that

this parameter was near constant at some load. It was found that the value of

(- -con was almost constant, i.e., the energy gradient was closest to zero, at the

critical load of 4980 lb. To isolate this behavior, Fig. 9 gives the energy curve at

this critical load taken from a family of curves similar to those in Fig. 7. This curve

clearly exhibits the very constant nature of energy far from the crack tip (r > r o.),

and is designated by ro.

In order to assess the significance of (-' V) n and ()- ),o it was imperative

to study the effects of different crack lengths on the behavior of the energy fields.

The specimen geometry remained the same as mentioned in figure 3 (width=2 in.,

height=2.4 in., thickness=1 in.). In addition to the original crack length of 1.537

inches, specimens with crack lengths of 1.0, 1.643, and 1.7685 inches were analyzed.

It was found that a global energy analysis of these specimens revealed the same

anomalous behavior in energy in the direction 0 = 0° as discussed above.

Similar to the curve in Fig. 8, three different curves were drawn in Fig. 10 to

further analyze the behavior of (ddL--)m versus load for specimens with different

crack lengths. The first observation is that the peak energy value (dW*" for

these curves are roughly the same and are approximately equal to 52 lb - in/in.

Secondly, beyond the end of each curve, it was found that plastic collapse occured

in the specimen. It is safe to assume that the ends of these curves can be linearly

extrapolated to cross over the load axis. At these points, (4 W)mifl = 0; this would

correspond to a condition where all of the energy stored in the specimens has been

26
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released and, as such, the condition corresponding to the failure of the specimens.

Thus, the fracture load can be analytically predicted for specimens with different

crack lengths. This fracture load can be directly compared with and verified by

experimental data. Furthermore, from Fig. 10 it was found that for all three curves,

the critical load corresponding to (4w-j'.mi, is approximately 83% of the fracture

load. Thus, (d- *i signifies a pre-failure condition which may be characteristic

of the material.

As regards the criticality of (dwi)*, Fig. 11 and 12 represent the strain energy

density versus radial distance from the crack tip for a wide range of external loads;

the crack lengths used in these figures are 1.0 in. and 1.643 in., respectively. It can

be seen from Fig. 11 and 12 that at a certain critical load which is dependent on

the crack length, - remains constant over the distance r > rit. However,

it should be noted that the values of (dw, in Fig. 11 and 12 are the same and

is equal to about 280 lb - in/in, as can be clearly seen in Fig. 13, Thus, (wV),

is independent of the crack length. It is also found that (t w ) is independent of .5

the specimen dimensions, as can be clearly seen in Fig. 14. Recalling that both
dV and (d-W-) * are exhibited at a fixed percentage (83%) of the predicted

fracture loads of various specimens having different crack length and geometry, it

is observed that both these energy quantities refer to some "pre-fracture events"
which are the charcteristic of the material. It is assumed that ( and w

(dV min 'd " cot.

correspond to the local and global instability, respectively, prior to the final frac-

ture of the specimens. (Note: the ratio of (d-1V') to (N- m is 5.4) The local

instability can be further interpreted as signifying the crack initiation at r = r;.,

requiring a relatively smaller level of energy. Likewise, the global instability can

be further interpreted as signifying a much higher level of energy for possible slow

crack growth, (up to r = rit) which is expected in the A-517 steel used in the

present investigation.

..
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VI. CONCLUSIONS

A computer program ARLPAPST has been developed to carry out two-dimen-

sional non-linear finite element stress analysis in the neighborhood of a crack in A-

517 steel compact tension specimens. A probable direction of crack propaegation and

loads corresponding to either catastrophic fracture or plastic collapse of specimens

having different crack lengths have been predicted. In addition, two critical energy

quantities, and (vjco- have been established. These quantities are in-

dependent of the crack length and the specimen geometry, and always correspond

to a fixed percentage (83%) of the predicted fracture loads for different specimens.

For A-517 steel, (d)*i and are 52 1b - in/in' and 280 lb - in/in', re-
spectively. It is observed that ignifies a local instability leading to crack

initiation at a fixed distance ahead of the crack; and ( v-)*on signifies a global

instability just before the slow crack growth, followed by the final failure of the

specimen.

ON%,e DW

38

a.3



VIII. REFERENCES

I .
•

1. Broek, David "Elementary Engineering Fracture Mechanics" Martinus Nijhoff

Publishers: Boston, 1982.

2. Griffith, A.A. "The Phenomenon of Rupture and Flow in Solids", Philosophical

Transactions of the Royal Society of London, A 221 (1921) pp. 163-197.

3. Liebowitz, H., ed. "Fracture: An Advanced Treatise", Vol. 1, Academic Press:

New York, 1968.

4. Suh, Nam P., and Arthur P.L. Turner "Elements of the Mechanical Behavior
of Solids" McGraw-Hill Book Company: New York, 1975.

5. Irwin, G.R., Fracture of Metals, American Society of Metals, Cleveland, Ohio,

1948.

6. Orowan, E., "Energy Criterion of Fracture, Welding Criterion of Fracture",

Welding Research Supplement, p. 157, 1955.

7. Sih, G.C., and Luciano deOliveira Faria, eds. "Fracture Mechanics Method-

ology: Evaluation of Structural Components Integrity" Martinus Nijhoff Pub-

lishers: The Hague, 1984.

8. Wells, A.A., "Unstable Crack Propagation in Metals: Cleavage and Fast Frac-
ture", Proc. of the Crack Propagation Symposium, Cranfield, p. 210, 1961.

9. Rice, J.R., "A Path Independent Integral and the Approximate Analysis of

Strain Concentration by Notches and Cracks", Journal of Applied Mechanics,

35, p. 379, 1968.

10. Liu, H.W. "On the Fundamental Basis of Fracture Mechanics", Engineering

Fracture Mechanics, Vol. 17, No. 5, 1983, pp. 425-438.

11. Sih, George C., ed. "Methods of Analysis and Solutions of Crack Problems",

Mechanics of Fracture, Vol. I, Noordhoff International Publishing: Leyden,

1972.

12. Sih, G.C. and E. Madenci "Fracture Initiation under Gross Yielding: Strain

Energy Density Criterion" Engineering Fracture Mechanics, Vol. 18, No. 3,

pp. 667-677, 1983.

13. Higdon, Archie and Edward H. Ohlsen, et al. "Mechanics of Materials" John

Wiley & Sons: New York, 1978.

14. Hucek, Harold J., ed. "Structural Alloys Handbook, Vol. 1", Battelle's Colum-

bus Laboratories: Columbus, Ohio, 1981 ,? .

39

S.- . . .~. . . . ... . . . . °



15. Engineering Properties of Steel, American Society of Metals, Metals Park, Ohio,

1982. -

16. Cook, Robert D. "Concepts and Applications of Finite Element Analysis" John

Wiley & Sons: New York, 1974.

17. Gallagher, Richard H. "Finite Element Analysis: Fundamentals" Prentice-Hall,

Inc.: Englewood Cliffs, New Jersey, 1975.

18. Hinton, E., and Owen, D.R.J. "An Introduction to Finite Element Computa-

tions" Pineridge Press Limited: Swansea, U.K., 1979.

19. Hinton, E., and Owen, D.R.J. "Finite Element Programming" Academic Press:

London, 1977.

20. Norrie, D.H., and deVries, G. "An Introduction to Finite Element Analysis"

Academic Press: New York, 1978.

21. Gifford, L. Nash, and Peter D. Hilton "Preliminary Documentation of PAPST:

Non-linear Fracture Stress Analysis by Finite Elements" DTNSRDC, 1981.

22. Gifford, L. Nash "APES: Second Generation Two-dimensional Fracture Me-

chanics and Stress Analysis by Finite Elements" DTNSRDC, 19'78.

23. Hilton, P.D. and L.N.Gifford "Elastic-Plastic Finite-Element Analysis for Two-

Dimensional Crack Problems" Elastic-Plastic Fracture: Second Symposium,

Volume I - Inelastic Crack Analysis, ASTM STP 803, C.F.Shih and J.P.Gudas,

eds., American Society for Testing and Materials, 1983, pp. 1256-273.

.

"..9

40 "

, .. .4..-



* ... .

i

.~
j.

I\:.~ ~.

A .

* ... ~* -.. .
.. * .... .~

* .. ~. ~

.~.

-. -

.. (.

~

pVP.

%

%r.
t

* ** * * * .* - ** ** * .~ *. . *. ** -. .. . * . . V

.. *,** .. *-.. ** .. *-.*.. .


